Search results for "particle beams"
showing 5 items of 5 documents
Arbitrary Phase Access for Stable Fiber Interferometers
2021
Well-controlled yet practical systems that give access to interference effects are critical for established and new functionalities in ultrafast signal processing, quantum photonics, optical coherence characterization, etc. Optical fiber systems constitute a central platform for such technologies. However, harnessing optical interference in a versatile and stable manner remains technologically costly and challenging. Here, degrees of freedom native to optical fibers, i.e., polarization and frequency, are used to demonstrate an easily deployable technique for the retrieval and stabilization of the relative phase in fiber interferometric systems. The scheme gives access (without intricate dev…
Proton Direct Ionization in Sub-Micron Technologies : Test Methodologies and Modelling
2023
Two different low energy proton (LEP) test methods, one with quasi-monoenergetic and the other with very wide proton beam energy spectra, have been studied. The two test methodologies have been applied to devices that were suggested from prior heavy-ion tests to be sensitive to proton direct ionization (PDI). The advantages and disadvantages of the two test methods are discussed. The test method using quasi-monoenergetic beams requires device preparation and high energy resolution beams, but delivers results that can be interpreted directly and can be used in various soft error rate (SER) calculation methods. The other method, using a heavily degraded high energy proton beam, requires littl…
0.1-10 MeV Neutron Soft Error Rate in Accelerator and Atmospheric Environments
2021
Neutrons with energies between 0.1-10 MeV can significantly impact the Soft Error Rate (SER) in SRAMs manufactured in scaled technologies, with respect to high-energy neutrons. Their contribution is evaluated in accelerator, ground level and avionic (12 km of altitude) environments. Experimental cross sections were measured with monoenergetic neutrons from 144 keV to 17 MeV, and results benchmarked with Monte Carlo simulations. It was found that even 144 keV neutrons can induce upsets due to elastic scattering. Moreover, neutrons in the 0.1-10 MeV energy range can induce more than 60% of the overall upset rate in accelerator applications, while their contribution can exceed 18% in avionics.…
Crystalline-Size Dependence of Dual Emission Peak on Hybrid Organic Lead-Iodide Perovskite Films at Low Temperatures
2018
In this work, we have investigated the crystalline-size dependence of optical absorption and photoluminescence emission of CH3NH3PbI3 films, which is necessary to identify the potential practical applications of the gadgets based on perovskite films. This study was carried out at low temperatures to minimize the extra complexity induced by thermal effects. The purpose was to clarify the origin of the dual emission peak previously reported in the literature. We found that the grain size is responsible for the appearance or disappearance of this dual emission on CH3NH3PbI3 at low temperatures, whereas we have inferred that the thickness of the perovskite layer is a much more important factor …
The Pion Single-Event Effect Resonance and its Impact in an Accelerator Environment
2020
International audience; The pion resonance in the nuclear reaction cross section is seen to have a direct impact on the single-event effect (SEE) cross section of modern electronic devices. This was experimentally observed for single-event upsets and single-event latchup. Rectangular parallelepiped (RPP) models built to fit proton data confirm the existence of the pion SEE cross-section resonance. The impact on current radiation hardness assurance (RHA) soft error rate (SER) predictions is, however, minimal for the accelerator environment since this is dominated by high neutron fluxes. The resonance is not seen to have a major impact on the high-energy hadron equivalence approximation estab…